Amaximum entropy approach to multiple classifiers combination
نویسندگان
چکیده
In this paper, we present a maximum entropy (maxent) approach to the fusion of experts opinions, or classifiers outputs, problem. Themaxent approach is quite versatile and allows us to express in a clear, rigorous,way the a priori knowledge that is available on the problem. For instance, our knowledge about the reliability of the experts and the correlations between these experts can be easily integrated: Each piece of knowledge is expressed in the form of a linear constraint. An iterative scaling algorithm is used in order to compute the maxent solution of the problem. The maximum entropy method seeks the joint probability density of a set of random variables that has maximum entropy while satisfying the constraints. It is therefore the “most honest” characterization of our knowledge given the available facts (constraints). In the case of conflicting constraints, we propose to minimise the “lack of constraints satisfaction” or to relax some constraints and recompute the maximum entropy solution. The maxent fusion rule is illustrated by some simulations.
منابع مشابه
Online multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملExtended MULTIMOORA method based on Shannon entropy weight for materials selection
Selection of appropriate material is a crucial step in engineering design and manufacturing process. Without a systematic technique, many useful engineering materials may be ignored for selection. The category of multiple attribute decision-making (MADM) methods is an effective set of structured techniques. Having uncomplicated assumptions and mathematics, the MULTIMOORA method as an MADM appro...
متن کاملImprovement of Chemical Named Entity Recognition through Sentence-based Random Under-sampling and Classifier Combination
Chemical Named Entity Recognition (NER) is the basic step for consequent information extraction tasks such as named entity resolution, drug-drug interaction discovery, extraction of the names of the molecules and their properties. Improvement in the performance of such systems may affects the quality of the subsequent tasks. Chemical text from which data for named entity recognition is extracte...
متن کاملNew entropy based combination rules in HMM/ANN multi-stream ASR
Classifier performance is often enhanced through combining multiple streams of information. In the context of multistream HMM/ANN systems in ASR, a confidence measure widely used in classifier combination is the entropy of the posteriors distribution output from each ANN, which generally increases as classification becomes less reliable. The rule most commonly used is to select the ANN with the...
متن کاملMulti-label Patent Classification at NTT Communication Science Laboratories
We design a multi-label classification system based on the combination of binary classifications for classification subtask at NTCIR-6 Patent Retrieval Task. In our system, we design a binary classifier per Fterm that determines the assignment of the F-term to patent documents. Hybrid classifiers are employed as binary classifiers so that the multiple components of patent documents are used eff...
متن کامل